Navigation


RSS : Articles / Comments


Sensor node

5:38 PM, Posted by Admin, No Comment

A sensor node, also known as a 'mote' (chiefly in North America), is a node in a wireless sensor network that is capable of performing some processing, gathering sensory information and communicating with other connected nodes in the network. The typical architecture of the sensor node is shown in figure.





Components of a Sensor Node


The main components of a sensor node as seen from the figure are microcontroller, transceiver, external memory, power source and one or more sensors.



Microcontroller
Microcontroller performs tasks, processes data and controls the functionality of other components in the sensor node. Other alternatives that can be used as a controller are: General purpose desktop microprocessor, Digital signal processors, Field Programmable Gate Array and Application-specific integrated circuit. Microcontrollers are most suitable choice for sensor node. Each of the four choices has their own advantages and disadvantages. Microcontrollers are the best choices for embedded systems. Because of their flexibility to connect to other devices, programmable, power consumption is less, as these devices can go to sleep state and part of controller can be active. In general purpose microprocessor the power consumption is more than the microcontroller, therefore it is not a suitable choice for sensor node. Digital Signal Processors are appropriate for broadband wireless communication. But in Wireless Sensor Networks, the wireless communication should be modest i.e., simpler, easier to process modulation and signal processing tasks of actual sensing of data is less complicated. Therefore the advantages of DSP's is not that much of importance to wireless sensor node. Field Programmable Gate Arrays can be reprogrammed and reconfigured according to requirements, but it takes time and energy. Therefore FPGA's is not advisable. Application Specific Integrated Circuits are specialized processors designed for a given application. ASIC's provide the functionality in the form of hardware, but microcontrollers provide it through software.



Transceiver
Sensor nodes make use of ISM band which gives free radio, huge spectrum allocation and global availability. The various choices of wireless transmission media are Radio frequency, Optical communication (Laser) and Infrared. Laser requires less energy, but needs line-of-sight for communication and also sensitive to atmospheric conditions. Infrared like laser, needs no antenna but is limited in its broadcasting capacity. Radio Frequency (RF) based communication is the most relevant that fits to most of the WSN applications. WSN’s use the communication frequencies between about 433 MHz and 2.4 GHz. The functionality of both transmitter and receiver are combined into a single device know as transceivers are used in sensor nodes. Transceivers lack unique identifier. The operational states are Transmit, Receive, Idle and Sleep.
Current generation radios have a built-in state machines that perform this operation automatically. Radios used in transceivers operate in four different modes: Transmit, Receive, Idle, and Sleep. Radios operating in Idle mode results in power consumption, almost equal to power consumed in Receive mode [4]. Thus it is better to completely shutdown the radios rather than in the Idle mode when it is not Transmitting or Receiving. And also significant amount of power is consumed when switching from Sleep mode to Transmit mode to transmit a packet.



External Memory


From an energy perspective, the most relevant kinds of memory are on-chip memory of a microcontroller and FLASH memory - off-chip RAM is rarely if ever used. Flash memories are used due to its cost and storage capacity. Memory requirements are very much application dependent. Two categories of memory based on the purpose of storage a) User memory used for storing application related or personal data. b) Program memory used for programming the device. This memory also contains identification data of the device if any.



Power Source


Power consumption in the sensor node is for the Sensing, Communication and Data Processing. More energy is required for data communication in sensor node. Energy expenditure is less for sensing and data processing. The energy cost of transmitting 1 Kb a distance of 100 m is approximately the same as that for the executing 3 million instructions by 100 million instructions per second/W processor. Power is stored either in Batteries or Capacitors. Batteries are the main source of power supply for sensor nodes. Namely two types of batteries used are chargeable and non-rechargeable. They are also classified according to electrochemical material used for electrode such as NiCd(nickel-cadmium), NiZn(nickel-zinc), Nimh (nickel metal hydride), and Lithium-Ion. Current sensors are developed which are able to renew their energy from solar, thermogenerator, or vibration energy. Two major power saving policies used are Dynamic Power Management (DPM) and Dynamic Voltage Scaling (DVS)[5]. DPM takes care of shutting down parts of sensor node which are not currently used or active. DVS scheme varies the power levels depending on the non-deterministic workload. By varying the voltage along with the frequency, it is possible to obtain quadratic reduction in power consumption.



Sensors
Sensors are hardware devices that produce measurable response to a change in a physical condition like temperature and pressure. Sensors sense or measure physical data of the area to be monitored. The continual analog signal sensed by the sensors is digitized by an Analog-to-digital converter and sent to controllers for further processing. Characteristics and requirements of Sensor node should be small size, consume extremely low energy, operate in high volumetric densities, be autonomous and operate unattended, and be adaptive to the environment. As wireless sensor nodes are micro-electronic sensor device, can only be equipped with a limited power source of less than 0.5 Ah and 1.2 V. Sensors are classified into three categories.




  • Passive, Omni Directional Sensors: Passive sensors sense the data without actually manipulating the environment by active probing. They are self powered i.e energy is needed only to amplify their analog signal. There is no notion of “direction” involved in these measurements.


  • Passive, narrow-beam sensors: These sensors are passive but they have well-defined notion of direction of measurement. Typical example is ‘camera’.


  • Active Sensors: These group of sensors actively probe the environment, for example, a sonar or radar sensor or some type of seismic sensor, which generate shock waves by small explosions.


The overall theoretical work on WSN’s considers Passive, Omni directional sensors. Each sensor node has a certain area of coverage for which it can reliably and accurately report the particular quantity that it is observing. Several sources of power consumption in sensors are a) Signal sampling and conversion of physical signals to electrical ones, b) signal conditioning, and c) analog-to-digital conversion. Spatial density of sensor nodes in the field may be as high as 20 nodes/ m3 .

References
^ Smart Dust
^ Home
^ CENS: Center for Embedded Networked Sensing
^ Y. Xu, J. Heidemann, and D. Estrin, Geography-informed energy conservation for ad-hoc routing, in Proc. Mobicom, 2001, pp. 70-84
^ Dynamic Power Management in Wireless Sensor Networks, Amit Sinha and Anantha Chandrakasan, IEEE Design & Test of Computers, Vol. 18, No. 2, March-April 2001

source:http://en.wikipedia.org/wiki/Sensor_node

No Comment