An OSPF network is divided into areas that are labeled with 32-bit area identifiers. The area identifiers are commonly, but not always, written in the dot-decimal notation of an IPv4 address. However, they are not IP addresses and may duplicate, without conflict, any IPv4 address. The area identifiers for IPv6 implementations of OSPF (OSPFv3) also use 32-bit identifiers written in the same notation. While most OSPF implementations will right-justify an area number written in other than dotted decimal format (e.g., area 1), it is wise to always use dotted-decimal formats. Most implementations expand area 1 to the area identifier 0.0.0.1, but some have been known to expand it as 1.0.0.0.
Areas are logical groupings of hosts and networks, including their routers having interfaces connected to any of the included networks. Each area maintains a separate link state database whose information may be summarized towards the rest of the network by the connecting router. Thus, the topology of an area is unknown outside of the area. This reduces the amount of routing traffic between parts of an autonomous system.
Several "special" area types are defined.
Areas are logical groupings of hosts and networks, including their routers having interfaces connected to any of the included networks. Each area maintains a separate link state database whose information may be summarized towards the rest of the network by the connecting router. Thus, the topology of an area is unknown outside of the area. This reduces the amount of routing traffic between parts of an autonomous system.
Several "special" area types are defined.
Backbone area
The backbone area (also known as area 0 or area 0.0.0.0) forms the core of an OSPF network. All other areas are connected to it, and inter-area routing happens via routers connected to the backbone area and to their own associated areas. It is the logical and physical structure for the 'OSPF domain' and is attached to all nonzero areas in the OSPF domain. Note that in OSPF the term Autonomous System Border Router (ASBR) is historic, in the sense that many OSPF domains can coexist in the same Internet-visible autonomous system, RFC1996 (ASGuidelines 1996, p. 25) [4].
The backbone area is responsible for distributing routing information between nonbackbone areas. The backbone must be contiguous, but it does not need to be physically contiguous; backbone connectivity can be established and maintained through the configuration of virtual links.
All OSPF areas must connect to the backbone area. This connection, however, can be through a virtual link. For example, assume area 0.0.0.1 has a physical connection to area 0.0.0.0. Further assume that area 0.0.0.2 has no direct connection to the backbone, but this area does have a connection to area 0.0.0.1. Area 0.0.0.2 can use a virtual link through the transit area 0.0.0.1 to reach the backbone. To be a transit area, an area has to have the transit attribute, so it cannot be stubby in any way.
The backbone area is responsible for distributing routing information between nonbackbone areas. The backbone must be contiguous, but it does not need to be physically contiguous; backbone connectivity can be established and maintained through the configuration of virtual links.
All OSPF areas must connect to the backbone area. This connection, however, can be through a virtual link. For example, assume area 0.0.0.1 has a physical connection to area 0.0.0.0. Further assume that area 0.0.0.2 has no direct connection to the backbone, but this area does have a connection to area 0.0.0.1. Area 0.0.0.2 can use a virtual link through the transit area 0.0.0.1 to reach the backbone. To be a transit area, an area has to have the transit attribute, so it cannot be stubby in any way.
Stub area
A stub area is an area which does not receive route advertisements external to the autonomous system (AS) and routing from within the area is based entirely on a default route. This reduces the size of the routing databases for the area's internal routers.
Modifications to the basic concept of stub areas exist in the not-so-stubby area (NSSA). In addition, several other proprietary variation have been implemented by systems vendors, such as the totally stubby area (TSA) and the NSSA totally stubby area, both an extension in Cisco Systems routing equipment.
Modifications to the basic concept of stub areas exist in the not-so-stubby area (NSSA). In addition, several other proprietary variation have been implemented by systems vendors, such as the totally stubby area (TSA) and the NSSA totally stubby area, both an extension in Cisco Systems routing equipment.
Not-so-stubby area
A not-so-stubby area (NSSA) is a type of stub area that can import autonomous system external routes and send them to other areas, but still cannot receive AS external routes from other areas. NSSA is an extension of the stub area feature that allows the injection of external routes in a limited fashion into the stub area.